新闻资讯

医用呼叫器系统 「医疗知识图谱」到「综合性医疗大脑」

2023-10-18 11:31

背景

最近,由于某些原因,特别关注了医疗知识图谱方面的发展&应用情况,有了些浅薄认识,故码此文,以供参考。

随着智能时代的到来,把临床数据、临床指南、组学数据通过大数据、知识图谱、可视化系统结合,核心医学概念的全面覆盖、医疗生态圈内全方位知识数据的聚合,构建综合医疗大脑,给临床医生、科研工作者、管理工作者提供帮助,成为未来医疗的发展方向。

Tips:

临床数据:医院信息系统的电子病历、影像、检验等一大堆专业临床业务系统产生的数据集合。

临床指南:针对特定的临床情况,帮助临床医生和患者根据特定的临床情况做出恰当决策的指导意见。

组学数据:如基因组学、蛋白组学及代谢组学产生的生物信息数据,医院另一个数据中心。

想法

既然是综合的医疗大脑,那么满足多样化的应用场景是必要条件,提供语义搜索、知识问答、临床辅助、疾病趋势预测、疾病易感人群、热词搜索标签云、预防、疾病所需检查、忌吃食物、理疗食谱等等。从大量的医疗新闻、临床指南,医院历史数据,药品库、疾病库、处方库、风险因子库和医疗资源库,建立起实体之间的语义关系,最后形成知识图谱、医学大脑、成为社会化医疗应用。

以美团餐饮大脑为参考,构建综合性医学大脑,邀请更多医疗机构参与合作,共同构建完整的医学大脑,包括疾病症状、用药参考、以及从海量病例中挖掘的经验知识等等,以疾病、症状、用药、问诊等节点,建立精准的关系结构,实现智能化的诊疗知识图谱。如果单纯按照临床数据、临床指南、组学数据等数据图谱化没有太大的发展意义。如CMeKG中文医学知识图谱,属学术研究不做过多评价。

CMeKG目前是1.0版,包括:6310种疾病、19853种药物(西药、中成药、中草药)、1237种诊疗技术及设备的结构化知识描述,涵盖疾病的临床症状、发病部位、 药物治疗、手术治疗、鉴别诊断、影像学检查、高危因素、传播途径、多发群体、就诊科室等以及药物的成分、适应症、用法用量、有效期、禁忌证等30余种常见关系类型, 关联到的医学实体达20余万,CMeKG目前的概念关系实例及属性三元组达100余万。CMeKG仅供学术研究使用,不做商业用途。

行业难点

医疗、金融等细分领域的智能化过程中,行业本身面临着诸多困境,医惠科技何国平讲到了医疗行业的四座大山:

针对以上问题,我在调研过程中发现OMAHA七巧板医学术语集文档,只不过加入使用需要支付昂贵的费用,这里我列出一些官方提供的文档作为参考:

1、OMAHA七巧板医学术语集入门指南.pdf

2、OMAHA术语集发布文件规范.pdf

3、子集定制工具使用指南.pdf

以前由专家收集整理信息的建设方式消耗巨大的资金与时间,至今仍没有一个较为完整的医学知识图谱。中文医学术语建设更是严重落后于发达国家,严重医疗大数据技术的发展。

上一篇:医院排队叫号大屏系统 计算机|互联网医疗研究框架:诊疗篇
返回
下一篇:医护可视对讲品牌系统 企鹅杏仁:强强联合还是抱团取暖?
Baidu
map