新闻资讯

医院可视医护对讲系统 人工智能在医疗领域的应用

2023-10-18 11:27

1.背景分析

人工智能是研究开发用于模拟和延伸人的智能的理论,方法,技术和应用系统的一项新技术科学,它的结构类似金字塔结构:上层是算法,中间是芯片,第三层是各种软硬件平台,最下面是应用。人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学校园的会议上正式使用了“人工智能”这个术语。之前的几十年中,人们对人工智能开展了广泛的研究,它作为计算机科学的一个分支,企图通过挖掘智能的实质,生产出一种新的类似人类大脑而做出反应的智能机器,该技术的应用领域包括机器人,图像识别,语言识别,自然语言处理,数据挖掘,模式识别和专家系统等。

随着AI+医疗的进一步融合、深入,政策和资金层面的大规模投入,AI辅助技术也在多个医疗细分领域提供了帮助。未来,基于大数据的深度学习将改变医疗行业,对疾病提供更快速、准确的诊断和治疗,将变得不再可怕。

2.应用前景

人工智能的飞速发展大大提高了医疗数据处理深度和效率。借助大数据分析和深度学习,以及计算机24h不知疲倦等运转优势,人工智能可以将医疗失误降低40%左右。

人工智能未来将从医院、医生、医药、患者四个经营和服务主体出发,充分利用数据储存和处理优势,触及医疗设施设备、诊断、手术、医药电商、挂号问诊、医生社区及工具、慢病管理及可穿戴设备等商业版块,促进医疗服务行业的快速有效更替,为健康服务。

3.应用原理

根据人工智能的特点,在医学领域中,凡是“重复性,有规律可循,可通过大数据计算出来的”都可被人工智能取代,因此医疗中一些重复性的工作或劳动,会优先被人工智能所替代,但人工智能的日期不会改变医学专业的本质,也无法替代医生的诊疗工作,很多医学的本质,专业的东西,因为有人的思维,情感和个性化的需求,给病人的体验是不一样的。仿照,虽然机器读片的速度和准确率超过医生,但提供的治疗方案单一,难以结合患者的个体情况,提供符合患者个性化需求的最佳治疗方案。因此,探索人工智能在医学领域应用的目标是:用人工智能来更好地呈现医学专业,促进医学学科的发展,而不靠设备,机器来替代医学专业。

4.发展迅速的原因 4.1.医疗健康产业供需严重不平衡

由于医疗资源缺乏和效率不高,目前我国卫生行业存在“看病难、看病贵”问题,没有办法满足人民群众不断增长的医疗需求。随着中国人口老龄化趋势下,疾病高发的数量日益增多,看病需求加大。但是受制于周期长、成本高等特点,培养更多的医务人员“这杯远水”解不了近渴。《2016 年中国卫生和计划生育事业发展统计公报》显示,医院卫生技术人员数同比增长5.57%,低于诊疗人次 6.17%的增幅,供给跟不上需求的增加。而人工智能在医疗领域上的运用可以大大降低成本和提高效率,弥补医疗健康产业供需严重不平衡。

4.2.医疗领域有海量的大数据

国务院办公厅 2016 年 6月发布 《关于促进和规范健康医疗大数据应用发展的指导意见》,把生物学资源和医疗大数据作为国家的基础战略资源,纳入了国家大数据战略布局。据预计,医疗数据量到 2020 年将超过 40 万亿 GB,并且还在以惊人的速度迅速增长。但我国的医疗数据分散在各个医疗机构,利用效率低。并且绝大部分是非结构化数据,大大超出了传统的数据计算处理能力。另外我国医疗数据分散在不同医院机构,深度利用率不高。人工智能领域计算机视觉、机器学习、深度学习等技术突破,可以激活这座沉睡的数据金矿。

4.3.医疗行业特征和人工智能技术优势高度吻合

医疗是一个知识、数据密集型的行业。在对失误零容忍的前提下,极其依靠强大的知识储备和处理分析能力进行诊断治疗。

5.具体应用

人工智能在医疗领域的应用,意味着全世界的人都能得到更为普惠的医疗救助,获得更好的诊断、更安全的微创手术、更短的等待时间和更低的感染率,并且还能提高每个人的长期存活率。从医疗行业发展状况和人工智能的特点优势来看,可以预想,未来人工智能在医疗领域将在至少以下5个方面影响我们的生活。

5.1.智能诊疗

智能诊疗就是将人工智能技术应用于疾病诊疗中,计算机可以帮助医生进行病理,体检报告等的统计,通过大数据和深度挖掘等技术,对病人的医疗数据进行分析和挖掘,自动识别病人的临床变量和指标。计算机通过“学习”相关的专业知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗是人工智能在医疗领域最重要、也最核心的应用场景。

5.2.医学影像智能识别

上一篇:护士站呼叫主机系统 互联网医疗的前景如何(解读互联网医疗的发展趋势)
返回
下一篇:医院远程探视系统 医共体怎么实现互联互通?这家县域医院给出了这4条经验
Baidu
map