售前电话
135-3656-7657
售前电话 : 135-3656-7657
古今中外,凡成就事业、对人类有作为的无一不是脚踏实地、艰苦攀登的结果。 —钱三强
根据纤芯直径2a和光波波长λ比值的大小,光纤的传输原理可用光在波导中的光线理论或导波理论进行分析。对于多模光纤,2a/λ远远大于光波波长λ,可用几何光学的光线理论近似分析光纤的传光原理和特性;对于单模光纤,2a可与λ比拟,就必须用麦克斯韦导波理论来进行分析。
全反射和相干——光纤传输条件
由2.3.1节可知,光波从折射率较大的介质入射到折射率较小的介质时,在边界将发生反射和折射,当入射角θi超过临界角θc时,将发生全反射,如图2.3.4c所示。光纤传输电磁波的条件除满足光线在纤芯和包层界面上的全反射条件外,还需满足传输过程中的相干加强条件。因此,对于特定的光纤结构,只有满足一定条件的电磁波可以在光纤中进行有效的传输,这些特定的电磁波称为光纤模式。光纤中可传导的模式数量取决于光纤的具体结构和折射率的径向分布。如果光纤中只支持一个传导模式,则称该光纤为单模光纤。相反,支持多个传导模式的光纤称为多模光纤。
为简单和直观起见,以阶跃型光纤为例,进一步用几何光学方法分析多模光纤的传输原理和导光条件。如图3.2.1所示,光线在光纤端面以不同角度α从空气入射到纤芯(n0<n1),不是所有的光线都能够在光纤内传输,只有一定角度范围内的光线在射入光纤时产生的折射光线才能在光纤中传输。假如在光纤端面的入射角是α,在波导内光线与正交于光纤轴线的夹角是θ。此时,θ>θc(临界角)的光线将发生全反射,而θ<θc的光线将进入包层泄漏出去。于是,为了光能够在光纤中传输,入射角α必须要能够使进入光纤的光线在光纤内发生全反射而返回纤芯,并以曲折形状向前传播。由图3.2.1可知,最大的α角应该是使θ=θc。
在n0/n1界面,根据斯奈尔定律(见2.3.1节)可得
全反射时,由式(2.3.2)可知,sinθc=n2/n1,将此式代入式(3.2.1),可得
当光从空气进入光纤时,n0=1,所以
定义数值孔径(NA)为
式中,Δ=(n1-n2)/n1为纤芯与包层相对折射率差。设Δ=1%,n1=1.5,得到NA=0.21或θc=12.1°。因此用数值孔径表示的光线最大入射角αmax是
角度2αmax称为入射光线的总接收角,它与光纤的数值孔径和光发射介质的折射率n0有关。式(3.2.4)只应用于子午光线入射,对于斜射入射光线,具有较宽的可接收入射角。多模光纤的大多数入射光线是斜射光线,所以它对入射光线所允许的最大可接收角要比子午光线入射的大。
当θ=θc时,光线在波导内以θc入射到纤芯与包层交界面,折射光线沿交界面向前传播(折射角为90°),如图3.2.1b所示。当θ<θc时,光线将折射进入包层并逐渐消失。因此,只有与此相对应的在半锥角为2αmax的圆锥内入射的光线才能在光纤内传播,所以光纤的受光范围是2αmax。
NA表示光纤接收和传输光的能力,NA(或αmax)越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高。对无损耗光纤,在αmax内的入射光都能在光纤中传输。NA越大,纤芯对光能量的束缚能力越强,光纤抗弯曲性能越好。但NA越大,经光纤传输后产生的输出信号展宽越大,因而限制了信息传输容量,所以要根据使用场合选择适当的NA。